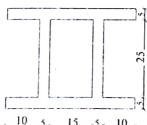
Sheet 4: Bending Stresses

<u>1-</u> A bending test was carried out on a steel beam having a cross section 4×8 cm and 80 cm span length. The beam is <u>centrally loaded</u>, the load (P), and the middle deflection (y) were as follows:

P (kg)	200	400	600	800	920	889 950	1000	1350	1600	1750	1800	1810	1750	1000
y (mm)	0.5	1	1.5	2	2.15	23 24	2.5	3	3.5	4	4.5	5	1.5	

Draw the load deflection diagram and determine:


- Proportional limit stress.
- Modulus of rapture.
- Modulus of resilience.

- Modulus of elasticity.
- Elastic energy stored in beam.
- <u>2-</u> A simply supported beam with a rectangular cross section X×Y, loaded by a distributed load W along its span L. How is the stresses changed by <u>reducing to half each</u> of:
- Distributed load W.

• Length of span.

• Width of the beam.

- Depth of the beam.
- Bending test was carried out on a beam having II-cross section as shown in figure, the beam is simply supported at point's 500 cm apart, with two-third points loading. Strain gauge were attached to the beam at the maximum deflection location. If the modulus of elasticity is 8×10^5 kg/cm².
- what load is required to give strain reading of 0.003?
- the maximum elastic deflection. Elastic strain energy stored in beam.

<u>4-</u> Determine the cross section dimensions of a 2.50 m simply supported beam with two point loads applied at the <u>fourth points</u> under a total load of 4 tons and a distributed load equal 1.5 t/m, the modulus of rupture is 800 kg/cm², with a depth equal to four times the width. Use design stress based on the modulus of rupture with a factor of safety equals 3.